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Definitions of Failure
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Failure is any action lead-
ing to an inability of the
structure [or its compo-
nents) to function in the
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manner intended.

Failure of a
brittle material

Types of Failure

Types (or Modes) of Failure
* Excessive elastic deformations
* Permanent deformation

{or yielding)
* Fracture
— Brittle [e.g., concrete,
stone, glass)
= Ductile [e.g., mild steel,
aluminum,copper)
— Progressive - fatigue

* Instability




Maximum Energy of

Distortion Theory

* In terms of principal stresses
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* Yielding begins when

Us = E‘lﬁ |:'3,-|n|dj2

Maximum Energy of
Distortion Theory

+ Two-dimensional state of stress, g'll = 0
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Maximum Octahedral Shear
Stress Theory

* Yielding is assumed to begin at a point
when the shearing stresses on the octahedral
planes at the point reach a value equal to the
octahedral shearing stress in uniaxial tension
[or compression).

*= In terms of principal stresses

11:n‘ﬂ_]z=g [.gl i ﬁn]h (t'.r“ _ ﬂJII] 2, {ﬁlil—sl)z ~ §1§ — Ut

o Toct
= % =+
m i Y iEm:xgu,

wocr = Yaty

Maximum Octahedral Shear
Stress Theory

+ In terms of principal stresses
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* Yielding begins when
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Maximum Octahedral Shear
Stress Theory

+ Two-dimensional case, ¢ =0
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same as the maximum energy of distortion
theory
* For the torsion test

- Maximum shear stress theory
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Uniaxial versus Multiaxial

(combined loading) cases

* For uniaxial stress {and loading) the onset
of failure [by yielding or fracture) can be
predicted from the stress-strain diagram.

* For multiaxial (combined loading) case,
a response quantity (stress, strain or energy)
associated with failure is chosen.

— A maximum [or critical] value of the
quantity is selected to predict the onset
of failure

— A uniaxial [or torsion) test is used to
determine the maximum |or critical] value.

Factors Affecting Mode
of Failure

Characteristics of structural member
- material
- geometry and shape

Loading
- loading configuration and rate
- surrounding media

3.5 Yielding and Fracture Criteria
for Multiaxial Stress State

3.5.1 Maximum Principal S5tress

Theory

3.5.2 Maximum 5train Theory

3.5.3 Maximum Shear Stress Theory

3.5.4 Maximum Total Strain Energy
Theory

2.5.5 Maximum Energy of Distortion
Theory

3.5.6 Maximum Octahedral Shear

Stress Theory

Maximum Principal Sress
Theory

Maximum Principal Stress Theory
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* Fracture is assumed to occur at a point
when the maximum principal stress at that
point reaches the ultimate stress in simple
tension or compression, for the material.
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+ The criterion is suitable for
brittle materials.
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Maximum Strain Theory

[5t. Venant's Theory)

+ Yielding is assumed to begin at a point
when the maximum strain at that point
reaches a value equal to that of the yield
strain in a simple tension test.

= In terms of principal strains
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Maximum Strain Theory

* Two-dimensional stress state G’"I =0
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Maximum Strain Theory
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Maximum Shear Stress
Theory

[{Coulomb's, Tresca's or Guest’s Theory]

= Yielding is assumed to begin at a point when
the maximum shear stress at that point equals
the shear stress at the yield point in a simple

tension test. 2—“—:

= In terms of principal stresses
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Maximum Strain Theory
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with similar equations for
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* In uniaxial tension
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* At the onset of yielding
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* The criterion is suitable for
ductile materials.




Maximum Shear Stress
Theory

* Two-dimensional stress state G‘"i =0
-if ol and c!! have the same sign, then
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Maximum Total Strain

Energy Theory

(Beltrami and Haigh's Theory|

= Yielding is assumed to begin at a point when
the total strain energy density at that point
reaches a value equal to the strain
energy density in uniaxial tension [or
compression).

* In terms of principal stresses, the total
strain energy density
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* In uniaxial tension

Maximum Total Strain

Energy Theory

= In terms of principal stresses, the total
strain energy density
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* In uniaxial tension
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Maximum Energy of
Distortion Theory

[(Von Mises, Huber, Hencky Theory)

* Yielding is assumed to begin at a point when
the distortional energy density [strain energy
density associated with the change in shape -
in terms of the deviatoric stresses and strains)
at that point reaches a value equal to the
distortional strain energy at yield in uniaxial
tension {or compression). atl

* In terms of principal stresses




Maximum Octahedral Shear
Stress Theory

- Maximum energy of distortion
| Ugisr = 21G{T;rruldiz |
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- Maximum octahedral shear stress
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Shaft Subjected to Combined

Axial Force and Twisting Moment
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uniformly distributed over the cross section.

* Torsional Shear Stresses N ‘_[:
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Shear stresses are maximum at the perimeter
of the cross section.
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Shaft Subjected to Combined

Axial Force and Twisting Moment

+ Maximum Principal Stresses
Occur at the perimeter of the cross section.

Stress Matrix
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Shaft Subjected to Combined
Axial Force and Twisting Moment

* Principal Stresses
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= Maximum Shear Stress
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Shaft Subjected to Combined
Axial Force and Twisting Moment

uniaxial stress state
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Shaft Subjected to Combined
Axial Force and Twisting Moment

* Volumetric and Deviatoric Stress Components
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Shaft Subjected to Combined

Axial Force and Twisting Moment

« Strain Enerqy Densities

12

2
Usot= 9 * 76
[ u'.lru1 = i TFygl * Eygl I

—T (1-2v)

- L “%3'( B3
:L_._T_’- [{_1—2;] ,_]




Shaft Subjected to Combined

Axial Force and Twisting Moment

For uniaxial stress state
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Shaft Subjected to Combined
Axial Force and Twisting Moment
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Application of Failure Theories
to Design

+ A margin of safety is introduced in the design.

= Factor of safety, f, is the ratio of the failure
load to the design load.

* Stresses are assumed to be proportional to the
loads. Therefore,

fu failure stress
design stress

Application of Failure Theories
to Design

= Maximum principal stress theory
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Odesign — ?Gyield

* Maximum strain theory
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Application of Failure Theories
to Design

+ Maximum shear stress theory

Tension test
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Torsion test
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Application of Failure Theories Application of Failure Theories
to Design to Design

* Maximum energy of distortion theory|

* Maximum total strain energy theory Tension test \ 2
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Application of Failure Theories
to Design

* Maximum octahedral shear stress theory

Tension test
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